2022年2月28日,科學技術(shù)部高技術(shù)研究發(fā)展中心(基礎(chǔ)研究管理中心)發(fā)布2021年度中國科學十大進展:火星探測任務天問一號探測器成功著陸火星;中國空間站天和核心艙成功發(fā)射,神舟十二號、十三號載人飛船成功發(fā)射并與天和核心艙成功完成對接;從二氧化碳到淀粉的人工合成;嫦娥五號月球樣品揭示月球演化奧秘;揭示SARS-CoV-2逃逸抗病毒藥物機制;FAST捕獲世界最大快速射電暴樣本;實現(xiàn)高性能纖維鋰離子電池規(guī)?;苽?/strong>;可編程二維 62 比特超導處理器“祖沖之號”的量子行走;自供電軟機器人成功挑戰(zhàn)馬里亞納海溝;揭示鳥類遷徙路線成因和長距離遷徙關(guān)鍵基因等10項重大科學進展入選。
“中國科學十大進展”遴選活動由科學技術(shù)部高技術(shù)研究發(fā)展中心(基礎(chǔ)研究管理中心)牽頭舉辦,至今已成功舉辦17屆,旨在宣傳我國重大基礎(chǔ)研究科學進展,激勵廣大科技工作者的科學熱情和奉獻精神,開展基礎(chǔ)研究科學普及,促進公眾理解、關(guān)心和支持基礎(chǔ)研究,在全社會營造良好的科學氛圍。
中國科學十大進展遴選程序分為推薦、初選和終選3個環(huán)節(jié)。2021年度,《中國基礎(chǔ)科學》《科技導報》《中國科學院院刊》《中國科學基金》和《科學通報》等5家編輯部共推薦了310項科學研究進展,所推薦的科學進展皆是在2020年12月1日至2021年11月30日期間正式發(fā)表或完成的研究成果。
2021年12月,科學技術(shù)部高技術(shù)研究發(fā)展中心(基礎(chǔ)研究管理中心)組織召開了2021年度中國科學十大進展初選會議,組織專家從推薦的310項科學進展中遴選出30項進展進入終選。終選邀請中國科學院院士、中國工程院院士、國家重點實驗室主任、國家重點研發(fā)計劃有關(guān)重點專項總體專家組成員和項目負責人、原973計劃顧問組和咨詢組專家、及項目首席科學家等3500余位知名專家學者對30項候選科學進展進行網(wǎng)上投票,得票數(shù)排名前10位的入選“2021年度中國科學十大進展”。
1 火星探測任務天問一號探測器成功著陸火星
2021年5月15日7時18分,天問一號探測器成功著陸于火星烏托邦平原南部預選著陸區(qū),我國首次火星探測任務著陸火星取得成功。任務采用了“氣動減速-傘降減速-動力減速-著陸緩沖”四級串聯(lián)減速技術(shù)路線,建立了設(shè)計迭代改進流程和多學科綜合優(yōu)化方法,提高了系統(tǒng)應對故障工況和進入條件極限拉偏下的安全著陸能力。
天問一號探測器著陸火星,是我國首次實現(xiàn)地外行星著陸,邁出了我國星際探測征程的重要一步,實現(xiàn)了從地月系到行星際的跨越,在火星上首次留下中國人的印跡,使我國成為第二個成功著陸火星的國家,是我國航天事業(yè)發(fā)展的又一具有里程碑意義的進展。
2 中國空間站天和核心艙成功發(fā)射神舟十二號、十三號載人飛船成功發(fā)射并與天和核心艙成功完成對接
2021年4月29日,中國空間站天和核心艙在海南文昌航天發(fā)射場發(fā)射升空,準確進入預定軌道,任務取得成功。天和核心艙發(fā)射成功,標志著我國空間站建造進入全面實施階段,為后續(xù)任務展開奠定了堅實基礎(chǔ)。
6月17日,神舟十二號載人飛船發(fā)射成功,并與天和核心艙成功完成對接,順利將聶海勝、劉伯明、湯洪波3位航天員送入太空,這是天和核心艙發(fā)射入軌后,首次與載人飛船進行的交會對接。我國的載人航天飛船脫離試驗階段,開始實現(xiàn)太空往返常態(tài)化,我國正式進入太空站時代。
10月16日,神州十三號載人飛船發(fā)射成功,并采用自主快速交會對接模式成功對接于天和核心艙徑向端口,順利將翟志剛、王亞平、葉光富3位航天員送入太空,實現(xiàn)了我國載人飛船在太空的首次徑向交會對接。
3 從二氧化碳到淀粉的人工合成
淀粉是糧食最主要的組分,也是重要的工業(yè)原料。中國科學院天津工業(yè)生物技術(shù)研究所馬延和等報道了由11步核心反應組成的人工淀粉合成途徑(ASAP),該途徑偶聯(lián)化學催化與生物催化反應,在實驗室實現(xiàn)了從二氧化碳和氫氣到淀粉分子的人工全合成。
通過從頭設(shè)計二氧化碳到淀粉合成的非自然途徑,采用模塊化反應適配與蛋白質(zhì)工程手段,解決了計算機途徑熱力學匹配、代謝流平衡以及副產(chǎn)物抑制等問題,克服了人工途徑組裝與級聯(lián)反應進化等難題。在氫氣驅(qū)動下ASAP將二氧化碳轉(zhuǎn)化為淀粉分子的速度為每分鐘每毫克催化劑22nmol碳單元,比玉米淀粉合成速度高8.5倍;ASAP淀粉合成的理論能量轉(zhuǎn)化效率為7%,是玉米等農(nóng)作物的3.5倍,并可實現(xiàn)直鏈和支鏈淀粉的可控合成。該成果不依賴植物光合作用,實現(xiàn)了二氧化碳到淀粉的人工全合成。
4 嫦娥五號月球樣品揭示月球演化奧秘
中國科學院地質(zhì)與地球物理研究所李獻華、楊蔚、胡森、林楊挺和中國科學院國家天文臺李春來等利用過去十多年來建立的超高空間分辨率的定年和同位素分析技術(shù),對嫦娥五號月球樣品玄武巖進行了精確的年代學、巖石地球化學及巖漿水含量的研究。結(jié)果顯示,嫦娥五號玄武巖形成于20.30±0.04億年,確證月球的火山活動可以持續(xù)到20億年前,比以往月球樣品限定的火山活動延長了約 8億年。
這一結(jié)果為撞擊坑定年提供了關(guān)鍵錨點,將大幅提高內(nèi)太陽系星體表面撞擊坑定年的精度。研究還揭示嫦娥五號玄武巖的月幔源區(qū)并不富含放射性生熱元素和水,排除了放射性元素提供熱源,或富含水降低熔點兩種月幔熔融機制,對未來的月球探測和研究提出了新的方向。
5 揭示SARS-CoV-2逃逸抗病毒藥物機制
不斷出現(xiàn)的新冠病毒突變株對當前已有的疫苗、中和抗體等抗病毒手段提出嚴峻挑戰(zhàn),亟需發(fā)展能有效應對各型突變株的廣譜藥物。在生命周期中,病毒的一系列轉(zhuǎn)錄復制酶組裝成“轉(zhuǎn)錄復制復合體”超分子機器,負責病毒轉(zhuǎn)錄復制的全過程,且在各型突變株中高度保守,是開發(fā)廣譜抗病毒藥物的核心靶點。
清華大學婁智勇、饒子和與上??萍即髮W高巖等發(fā)現(xiàn)并重構(gòu)了病毒“加帽中間態(tài)復合體”“mRNA加帽復合體”和“錯配校正復合體”,并闡明其工作機制。揭示了新冠病毒轉(zhuǎn)錄復制機器的完整組成形式;發(fā)現(xiàn)病毒聚合酶的核苷轉(zhuǎn)移酶結(jié)構(gòu)域是催化mRNA“加帽”成熟的關(guān)鍵酶,明確了帽結(jié)構(gòu)的合成過程,為發(fā)展新型、安全的廣譜抗病毒藥物提供了全新靶點;發(fā)現(xiàn)病毒以“反式回溯”的方式對錯配堿基和抗病毒藥物進行“剔除”,闡明了瑞德西韋等藥物效果不良的分子機制,為優(yōu)化針對聚合酶的抗病毒藥物提供了關(guān)鍵科學依據(jù)。
6 FAST捕獲世界最大快速射電暴樣本
快速射電暴(FRB)是無線電波段宇宙最明亮的爆發(fā)現(xiàn)象。FRB 121102是人類所知的第一個重復快速射電暴,中國科學院國家天文臺李菂等使用“中國天眼”FAST成功捕捉到FRB 121102的極端活動期,最劇烈時段達到每小時122次爆發(fā),累計獲取了1652個高信噪比的爆發(fā)信號,構(gòu)成目前最大的FRB爆發(fā)事件集合。
研究發(fā)現(xiàn)FRB爆發(fā)率存在特征能量E0=4.8x1037 erg;探測到其能譜的雙峰結(jié)構(gòu),即低能端接近正則對數(shù),展現(xiàn)快速射電暴重復過程的隨機性;高能端接近洛倫茲函數(shù),展現(xiàn)強輻射存在可能的相關(guān)過程。FAST樣本排除了FRB 121102爆發(fā)在一毫秒至一小時之間的周期性或準周期性,嚴格限制了重復快速射電暴由單一致密天體起源的可能性。該研究首次展現(xiàn)了FRB的完整能譜,深入揭示了FRB的基礎(chǔ)物理機制。
7 實現(xiàn)高性能纖維鋰離子電池規(guī)模化制備
如何通過設(shè)計新結(jié)構(gòu)(如創(chuàng)建纖維鋰離子電池)滿足電子產(chǎn)品高度集成化和柔性化發(fā)展要求,是鋰離子電池領(lǐng)域面臨的重大挑戰(zhàn)。
復旦大學彭慧勝、陳培寧等發(fā)現(xiàn)纖維鋰離子電池內(nèi)阻與長度之間獨特的雙曲余切函數(shù)關(guān)系,即內(nèi)阻隨長度增加并不增大,反而先下降后趨于穩(wěn)定。在此理論指導下構(gòu)建的纖維鋰離子電池具有優(yōu)異且穩(wěn)定的電化學性能,能量密度較過去提升了近2個數(shù)量級,彎折10萬次后容量保持率超過80%;建立的世界上首條纖維鋰離子電池生產(chǎn)線,實現(xiàn)了其規(guī)模化連續(xù)制備;編織集成得到的纖維鋰離子電池系統(tǒng),電化學性能與商業(yè)鋰離子電池相當,而穩(wěn)定性和安全性更加優(yōu)異。
8 可編程二維62比特超導處理器“祖沖之號”的量子行走
量子行走是經(jīng)典隨機行走的量子力學模擬,是實現(xiàn)量子模擬、量子搜索算法乃至通用量子計算的工具。
中國科學技術(shù)大學朱曉波、潘建偉等通過研發(fā)兼容平面工藝的三維引線技術(shù),實現(xiàn)了量子比特結(jié)構(gòu)從一維向二維的拓展,設(shè)計并制作了一個由62個比特組成的8×8的二維結(jié)構(gòu)超導量子比特陣列,構(gòu)建了“祖沖之號”量子計算原型機,并通過該裝置演示高保真的單粒子和雙粒子連續(xù)時間量子行走。利用量子處理器的高可編程性,實現(xiàn)了量子比特激發(fā)粒子行走路徑的精確調(diào)控,在固態(tài)量子芯片實現(xiàn)了馬赫-曾德爾干涉儀。
該工作是世界范圍內(nèi)公開發(fā)表的首個比特數(shù)超過60的超導量子計算領(lǐng)域的成果,驗證了對含噪聲中等規(guī)模量子比特系統(tǒng)的高精度量子調(diào)控能力,為研制祖沖之二號、實現(xiàn)“量子計算優(yōu)越性”奠定了基礎(chǔ)。
9 自供電軟機器人成功挑戰(zhàn)馬里亞納海溝
深海機器人與裝備需要高強度金屬耐壓外殼或壓力補償系統(tǒng)來保護內(nèi)部機電系統(tǒng)。浙江大學李鐵風等從深海獅子魚“頭部骨骼分散融合在軟組織中”這一生理特性提取仿生靈感,揭示了深海極端壓力條件下軟機器人功能器件破壞及驅(qū)動失效的內(nèi)在機制;提出了硬質(zhì)器件分散融入軟基體實現(xiàn)內(nèi)應力調(diào)控的方法,以及適應深海低溫、高壓環(huán)境的電驅(qū)動人工肌肉融合制造方法;建立了萬米深海軟機器人的系統(tǒng)構(gòu)造方法和驅(qū)動理論。
所研制的自供電軟機器人成功挑戰(zhàn)馬里亞納海溝,實現(xiàn)了10900米海底深潛和驅(qū)動,在南海海平面以下3224米實現(xiàn)深海航行。該研究大幅降低了深海機器人的重量及經(jīng)濟成本,推動了軟體機器人在深海工程領(lǐng)域的應用。
10 揭示鳥類遷徙路線成因和長距離遷徙關(guān)鍵基因
“遷徙生物如何發(fā)現(xiàn)其遷徙路線?”一直是社會和學術(shù)界廣泛關(guān)注的議題,也是《Science》雜志125個最具挑戰(zhàn)性科學問題之一。
中國科學院動物所詹祥江等歷時12年,利用衛(wèi)星追蹤數(shù)據(jù)和基因組信息,建立了一套北極游隼遷徙研究系統(tǒng),發(fā)現(xiàn)游隼主要使用5條路線穿越亞歐大陸,西部游隼表現(xiàn)為短距離遷徙,東部為長距離遷徙。在末次冰盛期到全新世的轉(zhuǎn)換過程中,冰川消退所導致的繁殖和越冬地變遷,可能是遷徙路線形成的主要歷史原因。研究還發(fā)現(xiàn)遷徙距離更長的游隼攜帶ADCY8優(yōu)勢等位基因,該基因與長時記憶形成有關(guān),表明長時記憶可能是鳥類長距離遷徙的重要基礎(chǔ)。該研究結(jié)合遙感衛(wèi)星追蹤、基因組學、神經(jīng)生物學等研究手段,通過多學科整合分析方法闡明了鳥類遷徙路線變遷成因和遺傳基礎(chǔ)。
原標題:2021年度中國科學十大進展公布