TDLAS技術(shù)利用窄線寬的可調(diào)諧激光光源,完整地掃描到氣體分子的一條或幾條吸收譜線,具有響應(yīng)速度快、靈敏度高、光譜分辨率高等優(yōu)勢,能夠?qū)崿F(xiàn)溫室氣體原位點式和區(qū)域開放式探測,對于多氣體組分探測通常需要多個激光器復(fù)用實現(xiàn)。
CRDS和OA-ICOS技術(shù)均屬于小型化的氣體原位探測技術(shù),在溫室氣體監(jiān)測方面,能夠?qū)崿F(xiàn)很高的檢測靈敏度,成本比TDLAS要高。
LHS和SHS都屬于高精度、高光譜分辨的氣體檢測技術(shù),適用于溫室氣體的柱濃度或垂直廓線探測,可用于地基和星載大氣探測領(lǐng)域。
雖然光譜學(xué)檢測技術(shù)的原理各不相同,但基本都是基于溫室氣體在紅外波段的特征吸收光譜來進(jìn)行濃度反算的,針對不同的應(yīng)用場景,綜合上述技術(shù)的測量優(yōu)勢,可以實現(xiàn)多空間尺度、多時間尺度、多氣體組分的連續(xù)自動監(jiān)測,滿足生態(tài)、環(huán)境、氣候研究對溫室氣體排放監(jiān)測的多樣需求。
在溫室氣體高靈敏探測技術(shù)方面,以美國Picarro、ABB為代表的氣體分析儀公司,開發(fā)了高性能的CRDS、OA-ICOS氣體檢測儀,在國內(nèi)大氣背景站、高原科考及其他溫室氣體高精度測量需求領(lǐng)域占據(jù)了絕對市場;溫室氣體柱總量及垂直廓線探測方面,德國Bruker超高分辨FTIR地基遙感是TCCON等組織全球碳排放觀測的主要技術(shù)方案;德國航空航天中心利用星載DIAL實現(xiàn)了三種主要溫室氣體的高精度遙感探測;LHS地基/星載溫室氣體探測是NASA發(fā)展部署中的技術(shù)方案,相關(guān)產(chǎn)品的工程化和應(yīng)用水平處于國際領(lǐng)先地位;在溫室氣體區(qū)域分布航測和排放源遙測評估方面,德國不萊梅大學(xué)開展了基于SCIAMACHY衛(wèi)星和機(jī)載WFMDOAS的算法及系統(tǒng)集成研究。目前國內(nèi)在溫室氣體監(jiān)測技術(shù)研究方面也開展了大量的工作,一些產(chǎn)品儀器也實現(xiàn)了產(chǎn)業(yè)化推廣,包括原位點式TDLAS溫室氣體監(jiān)測儀、開放光路長光程TDLAS溫室氣體測量儀、機(jī)載高靈敏CRDS溫室氣體分析儀、原位點式高精度OA-ICOS溫室氣體分析儀和溫室氣體SHS衛(wèi)星監(jiān)測載荷等,代表性研究單位包括中國科學(xué)院安徽光機(jī)所、中國科學(xué)院大連化學(xué)物理研究所、中國科學(xué)技術(shù)大學(xué)、國防科技大學(xué)、山西大學(xué)、南京信息工程大學(xué)等。由于起步較晚,國內(nèi)在溫室氣體高端分析儀器性能上,尤其是測量精度、環(huán)境適應(yīng)性和長期穩(wěn)定性等技術(shù)指標(biāo)方面與國外還存在一定的差距。
三、技術(shù)應(yīng)用
大氣中CO2、CH4、N2O三大溫室氣體的特征吸收光譜主要位于近紅外和中紅外光波段,其中近紅外波段波長在0.78-2.5μm范圍,對應(yīng)于氣體分子的“泛頻”吸收譜帶,而中紅外波段波長位于2.5-25μm范圍,對應(yīng)于氣體分子的“基頻”吸收譜帶,吸收強(qiáng)度要明顯高于近紅外波段,適用于超低濃度痕量氣體分子的高靈敏檢測。
針對目前溫室氣體多目標(biāo)場景監(jiān)測需求,研究人員開展了不同形式的探測方法研究,主要包括地面探測、地基探測、機(jī)載探測和星載探測,綜合運用各種吸收光譜技術(shù)和儀器,通過掃描獲取溫室氣體紅外波段的特征吸收光譜,經(jīng)過光電信號轉(zhuǎn)換、光譜信號采集、濃度算法解析、軟件數(shù)據(jù)處理等技術(shù)過程,能夠?qū)崿F(xiàn)溫室氣體多組分高靈敏時空分辨觀測。
圖1. 溫室氣體典型監(jiān)測應(yīng)用場景
3.1地面探測
在人為溫室氣體排放中,地面點源排放占比最高。典型的點源排放主要包括火電、鋼鐵、石化、化工等重點行業(yè)固定點源及高架點源等工業(yè)點源排放。此外,城市也是二氧化碳排放的主要來源,包括地面交通、城市餐飲集中區(qū)等典型城市點源排放,廢棄物處理行業(yè)的廢棄物填埋場和污水處理過程點源排放,以及農(nóng)林畜牧養(yǎng)殖業(yè)點源排放等。
針對地面點源溫室氣體監(jiān)測,又分為原位點式探測和開放光路區(qū)域式探測兩種方式,代表性檢測技術(shù)有NDIR、TDLAS、CRDS、OA-ICOS和FTIR。原位點式探測儀器,其內(nèi)部設(shè)計有密封式或開放式吸收池,面向的是環(huán)境中特定位置處或密閉艙室內(nèi)的溫室氣體監(jiān)測,儀器便攜性好,可以通過移動監(jiān)測儀器實現(xiàn)不同點位的溫室氣體原位探測,適用于小范圍區(qū)域的氣體排放監(jiān)測,代表性檢測儀器包括美國Licor公司生產(chǎn)的NDIR便攜式CO2分析儀、Picarro公司生產(chǎn)的CRDS高精度CO2/CH4/N2O分析儀、中國科學(xué)院安徽光機(jī)所研制的OA-ICOS高精度CO2/CH4分析儀等。開放光路區(qū)域式探測儀器,利用一對收發(fā)光學(xué)端,面向開放區(qū)域下的溫室氣體監(jiān)測,適用于幾十米至幾百米范圍的較大空間尺度監(jiān)測,代表性檢測儀器包括安徽藍(lán)盾光電子股份有限公司生產(chǎn)的TDLAS開放光路長光程CO2/CH4分析儀和中國科學(xué)院安徽光機(jī)所研制的FTIR開放光路CO2/CH4分析儀。
圖2.(a)原位點式CRDS監(jiān)測儀(b)區(qū)域開放式TDLAS監(jiān)測儀
3.2 地基探測
地面探測可以實現(xiàn)溫室氣體濃度的高精度在線測量,但測量結(jié)果容易受到地表、下墊面地形以及垂直氣團(tuán)傳輸?shù)挠绊懀⑶覠o法獲取大氣痕量氣體垂直廓線分布數(shù)據(jù)。地基遙感利用地基儀器實時采集直射太陽光,對采集的太陽光譜進(jìn)行反演,進(jìn)而獲得自地表到大氣層頂?shù)臏厥覛怏w垂直柱濃度。與地面探測不同的是,地基遙感測量得到的諸如CO2等溫室氣體垂直柱濃度對氣團(tuán)的垂直傳輸不敏感。地基遙感監(jiān)測結(jié)果能夠為溫室氣體時空分布、變化特征、區(qū)域排放等的研究提供可靠的觀測數(shù)據(jù)。
溫室氣體地基遙感探測的典型方法是高分辨率的FTIR技術(shù),監(jiān)測波段主要位于近紅外4000~11000cm-1波段,光譜分辨率可高達(dá)0.0095cm-1,它具有高精度、高準(zhǔn)確性以及連續(xù)測量等優(yōu)勢,但高分辨的地基FTIR也具有相對較大的設(shè)備體積,建設(shè)成本較高。地基高分辨率FTIR光譜儀,簡稱FTS。目前,全球碳柱總量觀測網(wǎng)(TCCON),就是基于FTS觀測平臺,探測多種大氣溫室氣體的柱總量和垂直廓線,主要組分包括CO2、CH4、N2O、CO、H2O、HDO。該網(wǎng)絡(luò)建立了嚴(yán)格的數(shù)據(jù)采集與反演標(biāo)準(zhǔn),可用于研究全球的碳循環(huán),也可為衛(wèi)星的校準(zhǔn)提供標(biāo)準(zhǔn)數(shù)據(jù)庫。目前TCCON在全球已有二十多個站點,具體分布如下圖3所示。
圖3. TCCON全球站點分布圖
3.3 機(jī)載探測
溫室氣體的機(jī)載高空探測主要是利用飛機(jī)、無人機(jī)或氣球搭載氣體測量儀器,在空中每個層高上對氣體進(jìn)行檢測或?qū)γ總€層高的氣體采樣后到實驗室進(jìn)行測量,具有靈活性高、機(jī)動性強(qiáng)、監(jiān)測面積大等優(yōu)點。機(jī)載溫室氣體探測是對溫室氣體垂直廓線的直接測量,結(jié)果具有更高的垂直分辨率與檢測精度。通過近地面機(jī)載觀測不僅能夠精準(zhǔn)穩(wěn)定獲取空間信息,而且能夠彌補(bǔ)野外站點觀測在空間連續(xù)性、區(qū)域一致性以及觀測精度上的不足,解決衛(wèi)星遙感時空分辨率過低以及與地面監(jiān)測校準(zhǔn)尺度不匹配的問題,成為溫室氣體監(jiān)測的一項重要輔助手段。
溫室氣體機(jī)載高空探測主要包含機(jī)載DIAL技術(shù)、機(jī)載FTIR技術(shù)、機(jī)載/球載TDLAS技術(shù)、機(jī)載/球載CRDS技術(shù)。美國NASA的研究人員在飛機(jī)上搭載一套DIAL系統(tǒng),實現(xiàn)了10km高空處的CO2柱濃度檢測。中國科學(xué)院安徽光機(jī)所采用一架Y-12型飛機(jī),飛行高度保持在1km,在山東半島地區(qū)開展了機(jī)載FTIR高空CO2、CO以及N2O的觀測,飛行路線覆蓋了裸土、沙灘、植被、海水以及居民區(qū)等多種地表類型。同樣是中國科學(xué)院安徽光機(jī)所,將研制的小型化TDLAS系統(tǒng)和CRDS系統(tǒng),通過球載探測方式分別實現(xiàn)了錫林郭勒草原和青藏高原地區(qū)高空溫室氣體垂直廓線探測。
圖4.(a)機(jī)載DIAL探測(b)球載TDLAS探測
3.4 星載探測
星載大氣溫室氣體探測指的是利用衛(wèi)星搭載的光譜檢測儀器來獲取大氣中氣體分子的吸收光譜信息,從而反演出目標(biāo)氣體的濃度參數(shù)。星載探測具備全球覆蓋和高采樣頻率的特點,可在全球尺度上對大氣溫室氣體開展廣范圍、長時間的持續(xù)監(jiān)測,因此星載探測可以促進(jìn)全球溫室氣體源匯分布的研究。目前國內(nèi)外已有多顆用于溫室氣體探測的衛(wèi)星,主要包括日本的GOSAT、美國的OCO-2、中國的TanSat和高分GF-5等。
溫室氣體衛(wèi)星遙感觀測所采用的光譜檢測技術(shù)主要包括FTIR技術(shù)、DIAL技術(shù)、LHS技術(shù)和SHS技術(shù)等。日本GOSAT衛(wèi)星上搭載的FTIR光譜儀的光譜分辨率達(dá)到0.2cm-1,能夠?qū)崿F(xiàn)CO2、CH4以及H2O等溫室氣體成分的柱濃度和垂直廓線探測。搭載于GF-5上的溫室氣體探測儀GMI,采用新型的觀測技術(shù)—SHS技術(shù)獲取最高達(dá)0.035nm的高分辨率光譜,能夠?qū)崿F(xiàn)CO2和CH4的全球觀測,是國際上首臺基于該體制的星載溫室氣體遙感設(shè)備。此外,美國NASA發(fā)展了全光纖近紅外LHS技術(shù),實現(xiàn)了大氣CO2、CH4柱濃度測量,并研制了星載LHS探測系統(tǒng),用于測量平流層大氣CO2、CH4濃度,不過衛(wèi)星目前尚未發(fā)射。
圖5. 2018年9月高分五號衛(wèi)星GMI載荷CO2觀測結(jié)果
四、總結(jié)展望
溫室氣體排放監(jiān)測對于評估溫室氣體排放水平,推動溫室氣體減排具有重要意義,國際上很多國家都相繼制定了溫室氣體測定的相關(guān)標(biāo)準(zhǔn)或法規(guī)。我國溫室氣體光譜學(xué)監(jiān)測技術(shù)經(jīng)過近二十年的發(fā)展取得了長足的進(jìn)步,探測手段、研發(fā)投入、應(yīng)用產(chǎn)出等都有了較大的提升,并逐漸形成了天地一體化監(jiān)測體系,地基遙感探測和衛(wèi)星遙感探測方面的一些研究成果也達(dá)到了國際先進(jìn)水平,但是目前一些溫室氣體高端分析儀器仍落后于西方發(fā)達(dá)國家,核心部件“卡脖子”現(xiàn)象頻現(xiàn),因此亟待推動監(jiān)測技術(shù)的創(chuàng)新優(yōu)化和國產(chǎn)儀器的更新迭代。未來,在碳達(dá)峰、碳中和以及環(huán)境污染防治等國家戰(zhàn)略推動下,基于光譜學(xué)原理的氣體檢測技術(shù)和儀器將在溫室氣體大氣背景監(jiān)測、生態(tài)通量監(jiān)測、碳柱及廓線監(jiān)測等方面發(fā)揮重要作用,相關(guān)的分析儀器也將朝著國產(chǎn)化、小型化、智能化等方向發(fā)展。
原標(biāo)題:技術(shù)熱點 | 溫室氣體監(jiān)測技術(shù)現(xiàn)狀和發(fā)展趨勢